

A Study of Spin-Hamiltonian Parameters and Defect Structure for Co^{2+} Ion in the Tetragonal Zn^{2+} Site of Ba_2ZnF_6 Crystal

Bang-Xing Li^a, Wen-Chen Zheng^{a,c}, and Wei-Qing Yang^{a,b}

^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China

^b Department of Optics and Electronics, Chengdu University of Information Technology, Chengdu 610225, P. R. China

^c International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwc1@163.com

Z. Naturforsch. **65a**, 877–881 (2010); received May 29, 2009 / revised September 8, 2009

The spin-Hamiltonian (SH) parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp}) for the Co^{2+} ion in the tetragonal Zn^{2+} site of a Ba_2ZnF_6 crystal are calculated from the second-order perturbation formulas based on the cluster approach for the SH parameters of 3d^7 ions in tetragonal symmetry with the effective spin $S = 1/2$. In the calculations, a reduction factor due to the dynamical Jahn-Teller effect is used. The calculated results are in reasonable agreement with the experimental values, suggesting that the dynamical Jahn-Teller effect should be considered here. The defect structure of the Co^{2+} center in $\text{Ba}_2\text{ZnF}_6:\text{Co}^{2+}$ is also obtained from the calculations. The results are discussed.

Key words: Electron Paramagnetic Resonance (EPR); Crystal- and Ligand-Field Theory; Defect Structure; Co^{2+} ; Ba_2ZnF_6 .